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� The diffusive “drift” flux of ion species j, relative to the mass-averaged mean flow, is

where uj is mean velocity of species j; u is mass-averaged velocity of mean flow
� Diffusive flux in a binary mixture is determined by gradients1-3:

for density U, diffusivity D, mass fraction c ≡ Uj/U, ion pressure Pi, ion temperature Ti, 
electron temperature Te, electric potential )

Ion species mass flux is produced by gradients in concentration, 
pressure, temperature, and electric potential
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1. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, §59 (1959)
2. G. Kagan and X.Z. Tang, Phys. Plasmas 19, 082709 (2012)
3. G. Kagan and X.Z. Tang, Phys. Lett. A 378, 1531 (2014)
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I’ve performed 1D planar simulations of a shock wave traveling through a 
hydrogen-neon gas mixture (e.g., Hans Rinderknecht’s shock tube) using 
the Zimmerman-Paquette-Kagan-Zhdanov (“ZPKZ”) ion transport model*

� Gas composition is 98% H, 2% Ne by 
atom (o 29% by mass)

� Initial gas density = 0.167 mg/cm3

� In simulation, shock wave is generated 
by motion of right-hand boundary 
(“piston”)
– Piston moves from right to left
– Piston accelerates from 0 km/s to 800 

km/s over 0.6 ns
– Resulting shock wave travels at ~1070 

km/s = 1.07 mm/ns
� Radiation transport plays no role, as 

determined by switching it on and off
� Shock structure is dominated by 

physical viscosity
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hne017
* N. Hoffman, G. Zimmerman et al., Phys. Plasmas 22, 052707 (2015); G. Kagan and X.Z. Tang, Phys. Lett. A 378, 1531 (2014); C. 
Paquette, C. Pelletier, G. Fontaine, G. Michaud, Ap. J. Suppl. Series 61, 177 (1986); V. M. Zhdanov, Transport Processes in 
Multicomponent Plasma, Taylor and Francis, New York, 2002
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Neon shock front lags behind hydrogen shock front

nNe

nH × 2/98

5 ns

4 ns

3 ns
2 ns

1 ns

𝑁𝑖(𝑧) = 𝑛𝑖(𝑧c)𝑑𝑧c

neon
hydrogen × 2/98

Total 
number of 
ions is 
conserved

5 ns 4 ns 3 ns 2 ns 1 ns

hne017 Is it really plausible that Ne density drops at head of 
shock? Artifact of Navier-Stokes approximation1? 1. F. S. Sherman, JFM 8, 465 (1960)



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA | 6

Compare simulations to analytic solution for species 
separation in planar steady shock wave

� Conservation of mass for light species:
– Mass fraction c of light species varies 

because of drift flux i of light species

� In shock frame, flow is in steady state: 

� Integrate, since Uu = constant = U�u+ in 
planar flow:

� …which is a nonlinear ODE for light-species 
concentration:
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� Consider binary mixture: light species + heavy species

“+”(“-”) indicates values in unshocked (shocked) material
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Ignore nonlinearities by using mean values for diffusivity 
and slowly varying diffusion ratios

� Replace actual nonlinear ODE with approximate linear ODE:

� Express the log gradient of quantity Q (= P, Ti, Te, U�) as

where and 

where Li is the shock width and SQ is a shape function

� Use ambipolar approximation:

� Then linear ODE is
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Linear ODE is solved using an integrating factor

� Change to dimensionless independent variable q ≡ x/Li:

where and 

� Solution is found with integrating factor exp(Aq):

(integrate by parts)

(repeated integration by parts) 

� In limit of large A, 'c(q) = F(q)/A ; i.e., species separation replicates force terms   
– Equivalent to neglecting d'c(q)/dq wrt A'c(q) in ODE
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Species separation in shock is governed by Péclet number Pe

� Definition of dimensionless parameter A: 

– Upstream fluid velocity in shock frame u+ = vs, shock velocity in lab frame

� Define where Li is shock width and       is mean diffusivity in shock

– Péclet number Pe expresses ratio of advective transport to diffusive transport 

� Bulk flow time across shock W = Li/vs, so                   = (shock width/diffusion distance)2

� So ≈ Pe for weak shock, ≈ 0.4 Pe for strong shock in J = 5/3 gas
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For large Pe, species separation is a replica of diffusive forces

15 ns
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of D is 30% too big

� In limit of large Pe, c(z) = c+(z) + F(z)/R+(z)Pe(z) where Pe(z) = u+Li /D(z) and  R+(z)
is (compression)-1, i.e., ratio of unshocked density to density
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ZPKZ model shows a strong (~3X), persistent enhancement of argon 
concentration in core of IonSepMMI capsule following shock arrival
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Shell 
composition 
is H:C:O = 
57:40:3

H from shell 
diffuses 
inward with 
the shock 
wave in fuel
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Enhancement 
persists for 
many 100s of ps
after bang time

� Enhancement is a result of ion thermodiffusion
– Simulations with ion thermodiffusion turned off show 

no such effect


